If it's not what You are looking for type in the equation solver your own equation and let us solve it.
43z-5z^2=24
We move all terms to the left:
43z-5z^2-(24)=0
a = -5; b = 43; c = -24;
Δ = b2-4ac
Δ = 432-4·(-5)·(-24)
Δ = 1369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1369}=37$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(43)-37}{2*-5}=\frac{-80}{-10} =+8 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(43)+37}{2*-5}=\frac{-6}{-10} =3/5 $
| 3/2(2x+6)0=3x+9 | | 2^(4-3x)=10 | | x/2x25=38 | | x=1/2x+1 | | y=19× | | 5/8=x/13 | | 6•x=24 | | 3=b | | 9+18x=9x-81 | | 6a=12-8a | | Q-4/3=z2 | | 8x+18=88-2 | | x²-5x+4=0 | | 3t-7=5t=15 | | 2^x(-5.2^(x+1))=-144 | | 3.2y−1.4y+y−0.6y=0.55 | | -9(k+6)=-106 | | 8x=90-2 | | x−6+3x−16+7x+4=180 | | 2^x-16+64=0 | | 3x+15+4x+17+2x+13=180 | | 5x-9=2x+5+x+16 | | 15=2t-5 | | -3×(3x-1)-1=3x | | n-20=6(n+15) | | 7x+14+9x-8=180 | | X/6(3x+2)-5(6x-1)=6(x-3)-5(7x-6)+12x | | 6x+7=-2x-74 | | 4×(10-2x)=3×(x-5) | | 12(x-6)=5x+16 | | 3x+2x^2=62 | | p=2L+2W= |